
The Implementation of NTS

Karel Skoupý & Philip Taylor

NTS: The Structure

the implementation language of NTS is Java

the program code is encapsulated in classes

objects are instances of (sub)classes

classes are clustered in packages

The initialization

\def \initialisation

{\nonstopmode

\input init.inc

\tracingcommands = 0 \tracingonline = 0 \tracingparagraphs = 0

\time = 750 \showboxdepth = 100 \showboxbreadth = 1000000

\baselineskip = 12pt \lineskiplimit = 0pt \lineskip = 1pt

\def \NTS {{\tenit NTS}}

\font \tenrm = cmr10 \font \tenit = cmti10 \tenrm

}

A normal paragraph

\def \normalpar

{\parindent = 0 pt

%\adjdemerits = 10

\pretolerance = 300

\tolerance = 300

}

A narrow paragraph

\def \narrowpar

{\hsize = 0,5\hsize

\tolerance = 9999

\leftskip = 0.2\hsize

}

A centered paragraph

\def \centeredpar

{\leftskip = 0.5\hsize plus 1 fil

\rightskip = \leftskip

\parindent = 0 em

\parfillskip = \parindent

\hsize = 2\hsize

}

A few rules

\def \divider #1%

{\ifcase #1

\message {No zeroth divider class}

\or

\par \hrule \par

\or

\par

\vskip 10pt

\hrule height 1 pt depth 1 pt

\vskip 10pt

\par

\else

\message {No divider class > 2}

\fi

}

The text

\def \text

{Other authors in this series of papers on \NTS\ have

explained the reasons for the creation of the \NTS˜project

(Joachim Lammarsch), the rationale behind the choice of

programming language (Ji\v{r}\’{\i} Zlatu\v{s}ka), and

future directions in which the project may develop (Hans

Hagen). This paper addresses the rather more detailed area

of the actual implementation itself, and is intended to

provide the reader with as much detail as can reasonably be

accommodated in a paper which is intended to appear in the

Conference Proceedings. A considerably more detailed version

of the paper will eventually be available as an accompaniment

to (or possibly integrated in) the JavaDoc documentation

which will accompany the released version of \NTS.

}

The typesetting

\setbox 1 = \hbox {\text}

\shipout \vbox

{\normalpar

\unhcopy 1

\divider 1

\narrowpar

\unhcopy 1

\divider 2

\centeredpar

\unhcopy 1

}

\end

tex

typo tfm dvi

builder

nodecommand

io

base

NTS Java packages

base

implements elementary data types

tex

typo tfm dvi

builder

nodecommand

io

base

Dimen Glue Num LevelEqTable

io

handles reading from input and writing to the log file

tex

typo tfm dvi

builder

nodecommand

io

base

CharCode Name InputLine Log Loggable

command

interprets the TEX input language

tex

typo tfm dvi

builder

nodecommand

io

base

Token Tokenizer Command CommandBase

node

represents the material to be typeset

tex

typo tfm dvi

builder

nodecommand

io

base

Node Packer FontMetric TypeSetter

builder

takes care of mode--related things

tex

typo tfm dvi

builder

nodecommand

io

base

Builder

typo

deals with typesetting

tex

typo tfm dvi

builder

nodecommand

io

base

TypoCommand BuilderCommand Group

tfm

handles the natural TEX font metrics

tex

typo tfm dvi

builder

nodecommand

io

base

TeXFm TeXFontMetric

dvi

takes care of TEX’s native output format

tex

typo tfm dvi

builder

nodecommand

io

base

DviFormatSetter DviTypeSetter

tex

glues everything into a program

tex

typo tfm dvi

builder

nodecommand

io

base

A few concluding remarks

compatibility with TEX is important to gain

user confidence and widespread acceptance

quite some time has been invested in obtaining strict compatibility with TEX

in spite of extensive documentation of TEX--the--

program, much in--depth study of the code was needed

Java still has kept its promise, but the heavy

use of objects will have a performance penalty

